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Abstract

Diffeomorphic deformable image registration is crucial
in many medical image studies, as it offers unique, spe-
cial properties including topology preservation and invert-
ibility of the transformation. Recent deep learning-based
deformable image registration methods achieve fast image
registration by leveraging a convolutional neural network
(CNN) to learn the spatial transformation from the syn-
thetic ground truth or the similarity metric. However, these
approaches often ignore the topology preservation of the
transformation and the smoothness of the transformation
which is enforced by a global smoothing energy function
alone. Moreover, deep learning-based approaches often es-
timate the displacement field directly, which cannot guar-
antee the existence of the inverse transformation. In this
paper, we present a novel, efficient unsupervised symmetric
image registration method which maximizes the similarity
between images within the space of diffeomorphic maps and
estimates both forward and inverse transformations simul-
taneously. We evaluate our method on 3D image registra-
tion with a large scale brain image dataset. Our method
achieves state-of-the-art registration accuracy and running
time while maintaining desirable diffeomorphic properties.

1. Introduction

Deformable image registration is crucial in a variety of

medical imaging studies and has been a topic of active re-

search for decades. The purpose of deformable image reg-

istration is to establish the non-linear correspondence be-

tween a pair of images and estimate the appropriate non-

linear transformation to align a pair of images. This max-

imizes the customized similarity between the aligned im-

ages. Deformable image registration can be useful when

analyzing images captured from different sensors, and/or

different subjects and different times as it enables the direct

comparison of anatomical structures across images from

different sources. For example, the manual delineation of

anatomical brain structures by an expert is difficult due to

the large spatial complexity of an MR brain scan. Also, it

usually suffers from the inter-rater variability problem [28],

while deformable image registration enables automatic and

robust delineation of brain anatomical structures by regis-

tering the target scan to a well-delineated atlas. Traditional

deformable registration approaches often model this prob-

lem as an optimization problem and strive to minimize the

energy function in an iterative fashion. However, this is

computationally intensive and time-consuming in practice.

Recently, several deep learning-based approaches have been

proposed for deformable image registration, which employ

a convolutional neural network (CNN) to directly estimate

the target displacement field that aligns a pair of input im-

ages. Although these methods achieve fast registration and

comparable registration accuracy in terms of average Dice

score on the anatomical segmentation map, the substantial

diffeomorphic properties of the transformation are not guar-

anteed. In other words, some desirable properties, including

topology-preservation and the invertibility of the transfor-

mation, for medical imaging studies have been ignored by

these approaches.

In this paper, we propose a novel fast symmetric dif-

feomorphic image registration method that parametrizes the

symmetric deformations within the space of diffeomorphic

maps using CNN. Specifically, instead of pre-assuming the

fixed/moving identity of the input images and outputting

a single mapping of all voxels of the moving volume to

fixed/target volume, our method learns the symmetric regis-

tration function from a collection of n-D dataset and output

a pair of diffeomorphic maps (with the equivalent length)

that map the input images to the middle ground between the

images from both geodesic path. Eventually, the forward

mapping from one image to another image can be obtained

by composing the output diffeomorphic maps and the in-

verse of the other diffeomorphic map, exploiting the fact

that diffeomorphism is a differentiable map and it guaran-
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tees there exists a differentiable inverse [3].

The main contributions of this work are:

• we present a fast symmetric diffeomorphic image reg-

istration method that guarantees topology preservation

and invertibility of the transformation;

• we propose a novel orientation-consistent regulariza-

tion to penalize the local regions with negative Jaco-

bian determinant, which further encourages the diffeo-

morphic property of the transformations; and

• our proposed paradigm and objective functions can be

transferred to various of applications with minimum

effort.

We demonstrate the effectiveness and quality of our

method with the example of pairwise registration of 3D

brain MR scans. Specifically, we evaluate our method on a

large scale T1-weighted MR dataset of over 400 brain scans

collected from [20]. Results demonstrate that our method

not only achieves state-of-the-art registration accuracy, the

output transformations are also more consistent with dif-

feomorphic property as compared with the state-of-the-art

deep learning-based registration approaches in both quality

and quantitative analysis.

2. Background
2.1. Deformable registration

Deformable registration Image registration refers to the

process of warping one (moving) image to align with a

second (fixed/reference) image, in which the similarity be-

tween the registered images is maximized. Typical transfor-

mations, including rigid and affine transformations, allow

different degrees of freedom in image transformation and

usually serves as an initial transformation for global align-

ment to deal with large deformation. Deformable image

registration is a non-linear registration process that tries to

establish the dense voxel-wise non-linear spatial correspon-

dence between fixed/reference image and moving image,

which allow much higher degrees of freedom in transfor-

mation. Let F , M denote the fixed image and the moving

image respectively and φ represents the displacement field.

The typical deformable image registration can be formu-

lated as:

φ∗ = argmin
φ

Lsim(F,M(φ)) + Lreg(φ), (1)

where φ∗ denotes the optimal displacement field φ,

Lsim(·, ·) denotes the dissimilarity function and Lreg(·)
represents the smoothness regularization function. In or-

der words, the optimization problem of deformable image

registration aims to minimize the dissimilarity (or maxi-

mize the similarity) of the fixed image F and warped im-

age M(φ) while maintaining a smooth deformation field φ.

In most of the deformable image registration settings, the

affine and scaling transformations have been factored such

that the only source of misalignment between the images is

non-linear. We follow this assumption throughout this pa-

per. All the brain scans tested in the experiments are affinely

registered to the MNI152 space [13] in the preprocessing

phase.

2.2. Diffeomorphic Registration

Recent deformable registration approaches often param-

eterize the deformable model using a displacement field u
such that the deformation field φ(x) = x + u(x), where x
denotes the identity transform. Although this parameteriza-

tion is simple and intuitive, the true inverse transformation

of the displacement field is not guaranteed to exist, espe-

cially for large and hirsute deformation. Moreover, this de-

formable model does not necessarily enforce a one-to-one

mapping in the transformation. Therefore, throughout this

paper, our approach sticks with diffeomorphisms instead.

Specifically, we implement our diffeomorphic deformation

model with the stationary velocity field. In theory, a diffeo-

morphism is differentiable and invertible, which guarantees

smooth and one-to-one mapping. Therefore, diffeomorphic

maps also preserve topology. The path of diffeomorphic

deformation fields φt parameterized by t ∈ [0, 1] can be

generated by the velocity fields as:

dφt

dt
= vt(φt) = vt ◦ φt, (2)

where ◦ is a composition operator, vt denotes the velocity

field at time t and φ0 = Id is the identity transformation. In

our settings, the velocity field remains constant over time.

In the literature, the deformation field can be represented

as a member of the Lie algebra and is exponentiated to pro-

duce a time 1 deformation φ(1), which is a member of a Lie

group such that φ(1) = exp(v). This implies that the expo-

nentiated flow field forces the mapping to be diffeomorphic

and invertible using the same flow field. To obtain the time

1 deformation field φ(1), we follow [1, 2, 9] to integrate the

stationary velocity field v over time t = [0, 0.5] using the

scaling and squaring method for both the fixed image and

moving image. Specifically, given an initial deformation

field φ(1/2T ) = x + v(x)/2T , where T = 7 denotes the

total time steps we used in our approach. The φ(1/2) can be

obtained using the recurrence φ(1/2t−1) = φ(1/2t) ◦φ(1/2t),

i.e., φ(1/2) = φ(1/4) ◦ φ(1/4).

3. Related Work
3.1. Classic Deformable Registration Methods

Classical deformable image registration approaches of-

ten optimize a deformation model with constraints iter-

atively to minimize a custom energy function, which is
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similar to the optimization problem defined in Eq. 1.

Several studies parameterize the problem with displace-

ment fields. The smoothness of the displacement fields

is either regularized by an energy function or Gaussian

smooth filtering. These methods include Demons [29], free-

form deformations with b-splines [27], deformable registra-

tion via attribute matching and mutual-saliency weighting

(DRAMMS) [21], dense image registration with Markov

Random Field [14] and statistical parametric mapping

(SPM) [15]. Besides, there are many studies which opti-

mize the registration problem within the space of diffeo-

morphic maps to ensure the desirable diffeomorphic prop-

erties. Popular diffeomorphic registration methods include

diffeomorphic Demons [30], symmetric image normaliza-

tion method (SyN) [3] and diffeomorphic registration using

b-splines [26]. These methods often formulate the registra-

tion problem as an independent iterative optimization prob-

lem. Hence, the registration time increases dramatically, es-

pecially when the target image pair contains large variations

in anatomical appearance.

3.2. Learning-based Deformable Registration
Methods

Many learning-based approaches, recently, have been

proposed for deformable image registration. These ap-

proaches often formulate the registration problem as a

learning problem with CNN. Recent learning-based meth-

ods can be roughly divided into two categories: super-

vised methods and unsupervised learning methods. Most

of the supervised methods [7, 24, 8, 32, 19] rely on ground

truth deformation fields or anatomical segmentation maps

to guide the learning process. Although supervised ap-

proaches greatly speed up the registration process in the in-

ference phase, the registration accuracy of these methods is

bounded by the quality of the synthetic ground truth defor-

mation field or the segmentation map.

Recently, several unsupervised methods have been pro-

posed. These methods utilize a CNN, a spatial transformer

and a differentiable similarity function to learn the dense

spatial mapping between input images pairs in an unsuper-

vised fashion. Vos et al. [11] demonstrate the efficiency of

the unsupervised method with 2D images and adopt cross-

correlation as a similarity function. Balakrishnan et al. [5]

generalize the method with 3D volumes and enforce the

smoothness of the displacement fields with L2 loss. Dalca

et al. [9] proposed a probabilistic diffeomorphic registration

method that offers uncertainty estimation. These methods

achieve comparable registration accuracy compared to clas-

sic registration methods while achieving fast registration.

It is worth noting that most of the existing CNN-based

methods parameterize the registration problem with dis-

placement vector fields and ignore the desirable diffeomor-

phic properties, including topology preservation and the in-

vertibility of the deformation field [7, 24, 8, 32, 11, 5]. Al-

though some methods enforce the smoothness of the dis-

placement field with a global regularization function, it is

not sufficient to guarantee that the predicted displacement

vectors are smooth and consistent in orientation within the

local region. Moreover, the inverse of the transformation

is not considered and guaranteed by these methods as well.

Specifically, these methods assume the fixed/moving iden-

tities of the input images and estimate the transformation

from fixed image to moving image. Motivated by these

studies, we present an unsupervised symmetric registration

method that is capable of estimating plausible, topology-

preserving and inverse-consistent transformations between

images from inter-subject.

4. Method

In most of the learning-based deformable image regis-

tration approaches, the pair of input images often assigned

as a fixed image and a moving image and only one single

mapping from the fixed image to the moving image is con-

sidered. Moreover, the inverse mapping is often ignored in

these approaches. In our symmetric registration settings, we

highlight that we do not assume the fixed or moving identity

to the input images. Specifically, let X , Y be two 3D im-

age volumes defined in a mutual spatial domain Ω ⊂ R3.

The deformable registration problem can be parametrized

as a function fθ(X,Y ) = (φ
(1)
XY , φ

(1)
Y X), where θ denotes

the learning parameters in CNN. φ
(1)
XY = φXY (x, 1) and

φ
(1)
Y X = φY X(y, 1) represent the time 1 diffeomorphic de-

formation fields that warp the identity position of some

anatomical position x∈X toward y∈Y and warps y∈Y to-

ward x∈X respectively. Motivated by the conventional

non-learning based symmetric image normalization meth-

ods [31, 3, 23], we propose to learn the two separated time

0.5 deformation fields that warp both X and Y to their mean

shape M in the geodesic path. After the model converges,

the time 1 deformation fields that warp X to Y and Y to

X can be obtained by the composition of two estimated

time 0.5 deformation fields subject to the fact that diffeo-

morphism is a differentiable map and it guarantees a differ-

entiable inverse exists [2]. The transformation from X to Y

is decomposed into φ
(1)
XY = φ

(−0.5)
Y X (φ

(0.5)
XY (x)), while the

transformation from Y to X is decomposed into φ
(1)
Y X =

φ
(−0.5)
XY (φ

(0.5)
Y X (y)). Hence, the function fθ can be rewritten

as fθ(X,Y ) = (φ
(−0.5)
Y X (φ

(0.5)
XY (x)), φ

(−0.5)
XY (φ

(0.5)
Y X (y))).

4.1. Symmetric Diffeomorphic Neural Network

As shown in Fig. 1, we parametrized the function fθ
using a fully convolutional neural network (FCN), several

scaling and squaring layers and differentiable spatial trans-

formers [16]. φ
(0.5)
XY and φ

(0.5)
Y X are computed using the scal-
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Figure 1. Overview of the proposed method for symmetric diffeomorphic image registration. We utilize the FCN to learn the symmetric

time 0.5 deformation fields that warp both X and Y to the their mean shape M within the space of diffeomorphic maps. The path with

green color depicts the transformation from X to Y , while the path with yellow color depicts the transformation from Y to X . We omit

the magnitude loss Lmag in this figure for simplicity.

Figure 2. An illustration of the proposed fully convolutional net-

works architecture that utilized to estimate the target velocity fields

vXY and vY X . The blocks highlighted with blue and purple color

indicate the 3D feature maps from the encoder and decoder respec-

tively.

ing and squaring method with the estimated velocity fields

vXY and vY X respectively.

The architecture of our FCN is similar to U-Net [25],

which consists of an 5-level hierarchical encoder-decoder

with skip connections as shown in Fig. 2. The proposed

FCN concatenates X and Y as a single 2-channels input

and learns to estimate two dense, non-linear velocity fields

vXY and vY X from X and Y jointly from the beginning.

For each level in the encoder, we apply two successive con-

volution layers, which contain one 3 × 3 × 3 convolution

layer with a stride of 1, followed by a 3× 3× 3 convolution

layer with a stride of 2 to further compute the high-level

features between the inputs and to downsample the features

in half until the lowest level is reached. For each level in the

decoder, we concatenate the feature maps from the encoder

through skip connection and apply 3 × 3 × 3 convolution

with a stride of 1 and 2 × 2 × 2 deconvolution layer for

upsampling the feature maps to twice of its size. At the

end of the decoder, two 5 × 5 × 5 convolution layers with

a stride of 1 are appended to the last convolution layer and

generate the velocity fields vXY and vY X , followed by a

softsign activation function (i.e., SoftSign(x) = x
1+|x| ). It

then multiplies itself by a constant c, to normalize the ve-

locity fields within the range [−c, c]. We set c = 100 such

that it is sufficient for large deformation. Empirically, the

non-linear misalignment is usually less than 25 voxels in

the deformable registration of brain MR scans with 1mm3

resolution. In our FCN, each convolution layer is followed

by a rectified linear unit (ReLU) activation, except for the

output convolution layers.

Besides, we follow [1, 9] to implement the scaling and

squaring layer with a differentiable spatial transformer and

utilize it to integrate the estimated velocity fields to time

0.5 deformation fields φ
(0.5)
XY and φ

(0.5)
Y X , subject to φ(1) =

exp(v). Specifically, given a constant time step T , we ini-

tialize φ
(1/2T )
XY = x + vXY (x)/2

T and φ
(1/2T )
Y X = x +

vY X(x)/2T . We compute the time 0.5 deformation fields

through the recurrence φ(1/2t−1) = φ(1/t)◦φ(1/t) until t =
1. The composition of two deformation fields is computed

using a differentiable spatial transformer with trilinear inter-

polation such that φ(1/t)◦φ(1/t) = φ(1/t)(φ(1/t)(x)). Since

the deformation fields are diffeomorphic and the mapping is

one-to-one, we exploit the fact that the inverse transforma-
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tions can be computed by integrating the same velocity field

backward, such that φ(−1/2T ) = x − v(x)/2T and the re-

currence denoted as φ(−1/2t−1) = φ(−1/2t) ◦ φ(−1/2t).

Moreover, a spatial transformer is utilized to transform

the image based on the input image and the computed defor-

mation field. Specifically, we implement the spatial trans-

former with an identity grid generator and trilinear sampler.

The deformation field computed by the scaling and squar-

ing layer is added to the identity grid. Then, the trilinear

sampler uses the resulting grid to warp the input image. In

particular, the spatial transformer generates the warped im-

ages X(φ
(0.5)
XY ), Y (φ

(0.5)
Y X ), X(φ

(1)
XY ) and Y (φ

(1)
Y X) with the

estimated deformation field φ
(0.5)
XY , φ

(0.5)
Y X , φ

(−0.5)
Y X (φ

(0.5)
XY (x)

and φ
(−0.5)
XY (φ

(0.5)
Y X (y)) respectively, as shown in Fig. 1.

4.2. Symmetric Similarity

Existing CNN-based methods often ignore desirable dif-

feomorphic properties, including topology preservation, in-

vertibility and inverse consistency of the transformation

[7, 24, 8, 32, 11, 5]. Inspired by the classic iterative-based

symmetric normalization methods [31, 3, 23], our method

estimates the transformations (e.g., φ
(0.5)
XY and φ

(0.5)
Y X ) from

both X and Y to the mean shape M , and the transforma-

tions (e.g., φ
(1)
XY and φ

(1)
Y X ) that warp X to Y and Y to

X . We propose to minimize the symmetric mean shape

similarity loss Lmean and pairwise-similarity loss Lsim by

gradient descent, which enforce the invertibility and the in-

verse consistency of the predicted transformations. Similar

to the existing CNN-based methods, our proposed method

is compatible with any differentiable similarity metrics such

as normalized cross-correlation (NCC), mean squared er-

ror (MSE), sum of squares distance (SSD) and mutual in-

formation (MI). For simplicity, we utilize the normalized

cross-correlation NCC as our similarity metric to compute

the degree of alignment between two images. Let I and J
be two input image volumes, Ī(x) and J̄(x) be the local

mean of I and J at position x respectively. The local mean

is computed over a local w3 window centered at each posi-

tion x, with w = 7 in our experiments. The NCC is defined

as follows:

NCC(I, J) =

∑
x∈Ω

∑
xi
(I(xi)− Ī(x))(J(xi)− J̄(x))√∑

xi
(I(xi)− Ī(x))2

∑
xi
(J(xi)− J̄(x))2

, (3)

where xi denotes the position within w3 local windows cen-

tered at x.

Specifically, our proposed similarity loss function Lsim

consists of two symmetric loss terms: mean shape simi-

larity loss Lmean and pairwise similarity loss Lpair. The

Lmean measures the dissimilarity between the warped X
and warped Y , which toward the mean shape M , while

the Lpair measures the pairwise dissimilarity between the

warped X to Y and warped Y to X . The proposed similar-

ity loss function is then formulated as:

Lsim = Lmean + Lpair (4)

with

Lmean = −NCC(X(φ
(0.5)
XY ), Y (φ

(0.5)
Y X )) (5)

and

Lpair = −NCC(X(φ
(1)
XY ), Y )−NCC(Y (φ

(1)
Y X), X) (6)

where φ
(1)
XY (and φ

(1)
Y X ) can be decomposed into φ

(−0.5)
Y X ◦

φ
(0.5)
XY (and φ

(−0.5)
XY ◦φ(0.5)

Y X ) in diffeomorphic space. In other

words, minimizing the Lsim tends to maximize the similar-

ity of the warped images in a bidirectional fashion. Fur-

thermore, not only does our method inherit the topology-

preservation and invertibility properties from the diffeo-

morphic deformation model, the inverse consistency is im-

plicitly guaranteed by the proposed pairwise similarity loss

function as it considers the transformation from both direc-

tions.

4.3. Local Orientation Consistency

Existing learning-based approaches [5, 10, 17] often reg-

ularize the deformation field with a regularization loss func-

tion, such as an L2-norm on the spatial gradients of the de-

formation field. Although the smoothness of the deforma-

tion field can be controlled by the weight of the regularizer,

the global regularizer may greatly degrade the registration

accuracy of the model, especially when a large weight is as-

signed for the regularizer. Furthermore, these regularizers

are not sufficient to secure a topology-preservation transfor-

mation in practice. To address this issue, we propose a novel

selective Jacobian determinant regularization that imposes

a local orientation consistency constraint on the estimated

deformation field. Mathematically, the proposed selective

Jacobian determinant regularization loss LJdet is defined

as:

LJdet =
1

N

∑
p∈Ω

σ(−|Jφ(p)|), (7)

where N denotes the total number of elements in |Jφ|, σ(·)
represents an activation function that is linear for all positive

values and zero for all negative values. In our experiments,

we set σ(·) = max(0, ·), which is equivalent to the ReLU

function and |Jφ(·)| denotes the determinant of the Jacobian

matrix deformation field φ at position p. The definition of

Jacobian matrix Jφ(p) can be written as:

Jφ(p) =

⎛
⎜⎝

∂φx(p)
∂x

∂φx(p)
∂y

∂φx(p)
∂z

∂φy(p)
∂x

∂φy(p)
∂y

∂φy(p)
∂z

∂φz(p)
∂x

∂φz(p)
∂y

∂φz(p)
∂z

⎞
⎟⎠ (8)
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The Jacobian matrix of the deformation fields is a second-

order tensor field formed by the derivatives of the defor-

mations in each direction. The determinant of the Jacobian

determinant could be useful in analyzing the local behav-

ior of the deformation field. For example, a positive point

p ∈ |Jφ| means the deformation field at point p preserves

orientation in the neighborhood of p. On the contrary, if

the point p ∈ |Jφ| is negative, the deformation field at

point p reverses the orientation in the neighborhood of p
and, hence, the one-to-one mapping has been lost. We ex-

ploit this fact to enforce the local orientation consistency on

the deformation fields by penalizing the local region with a

negative Jacobian determinant, while the region with pos-

itive Jacobian determinant (i.e., consistence orientation in

the neighborhood) will not be affected by this regulariza-

tion loss. It is worth noting that the proposed selective Ja-

cobian determinant regularization loss means not to replace

the global regularizer. Instead, we utilize both regulariza-

tion loss functions in our method to produce smooth and

topology-preservation transformations while alleviating the

tradeoff between smoothness and registration accuracy. In

particular, we further enforce the smoothness of the velocity

fields with Lreg =
∑

p∈Ω(||∇vXY (p)||22 + ||∇vY X(p)||22).
Besides, we further avoid the bias on either path by

imposing a magnitude constraint Lmag = 1
N (||vXY ||22 −

||vY X ||22), which explicitly guarantees the magnitude of the

predicted velocity fields are (approximately) the same.

Therefore, the complete loss function of our method can

be written as:

L(X,Y ) = Lsim + λ1LJdet + λ2Lreg + λ3Lmag, (9)

where λ1, λ2 and λ3 are the weights to balance the con-

tributions of the orientation consistency loss, regularization

loss, and magnitude loss respectively.

5. Experiments
5.1. Data and Pre-processing

We evaluated our method on brain atlas-based registra-

tion using 425 T1-weighted brain MRI scans from OASIS

[20] dataset. Subjects aged from 18 to 96 and 100 of the

included subjects have been clinically diagnosed with very

mild to moderate Alzheimer’s disease. We resampled all

MRI scans to 256 × 256 × 256 with the same resolution

(1mm×1mm×1mm) followed by standard preprocessing

steps, including motion correction, skull stripping, affine

spatial normalization and subcortical structures segmenta-

tion, for each MRI scan using FreeSurfer [12]. Then, we

center cropped the resulting MRI scan to 144× 192× 160.

Subcortical segmentation maps, including 26 anatomical

structures, serve as the ground truth to evaluate our method.

We split the dataset into 255, 20 and 150 volumes for

train, validation and test sets respectively. We evaluate our

method on the atlas-based registration task. Atlas-based

registration is a common application in analyzing inter-

subject images, which aims to establish the anatomical cor-

respondence between the atlas and the target image (mov-

ing image). The atlas could be a single volume or the aver-

age image volume among images within the same space. In

our experiments, we randomly select 5 MR volumes from

the test set as the atlas and we perform atlas-based regis-

tration with different deformable registration approaches,

which align the reminding image volumes in the test set to

match the selected atlas. Hence, we register 725 pairs of

volumes in the test set for each method in total. During the

evaluation, we set X to atlas and Y to the moving subject

for our method.

Figure 3. Example axial MR slices from the atlas, moving image,

resulting warped image and deformation field for DIF-VM, VM

and our method. The region with non-positive Jacobian determi-

nant in each deformation field is overlayed with red color. The

circles in red color highlight the artifact on the left and right puta-

men from the result of DIF-VM.

5.2. Measurement

Since the ideal ground truth of the non-linear deforma-

tion field is not well-defined, we evaluate a registration al-

gorithm with two common metrics, Dice similarity coeffi-

cient (DSC) and Jacobian determinant (|Jφ|). Specifically,

we first register each brain MR volume to an atlas. Then,

we warp the anatomical segmentation map of the subject to

align with the atlas segmentation map using the resulting

deformation fields. Subsequently, we evaluate the overlap

of the segmentation maps using DSC and the diffeomor-

phic property of the predicted deformation fields using the

Jacobian determinant.

5.2.1 Dice Similarity Coefficient (DSC)

DSC measures the spatial overlap of anatomical segmenta-

tion maps between the atlas and warped moving volume.

In particular, 26 anatomical structures were included in our

analysis as shown in Fig. 4. The value of DSC ranges from

[0, 1] and a well-registered moving MRI volume should

show a high anatomical correspondence to the atlas, and

hence yielding a high DSC score.

4648

Authorized licensed use limited to: CMU Libraries - library.cmich.edu. Downloaded on August 16,2020 at 04:07:44 UTC from IEEE Xplore.  Restrictions apply. 



Figure 4. Boxplots illustrating Dice scores of each anatomical structure for SyN, DIF-VM, VM(λ = 10) and our method. Left and right

brain hemispheres are combined into one structure for visualization. Brain stem (BS), thalamus (Th), cerebellum cortex (CblmC), lateral

ventricle (LV), cerebellum white matter (WM), putamen (Pu), caudate (Ca), pallidum (Pa), hippocampus (Hi), 3rd ventricle (3V), 4th

ventricle (4V), amygdala (Am), CSF (CSF), and cerebral cortex (CeblC) are included.

5.2.2 Jacobian Determinant

Jacobian matrix is the derivatives of the deformations,

which captures the local behaviors of the deformation field,

including shearing, stretching and rotating of the deforma-

tion field. The definition of the Jacobian matrix Jφ(p) is

defined in eq 8. In theory, the local deformation field is dif-

feomorphic, including topology-preserving and invertible,

only for the regions with positive Jacobian determinant (i.e.,

|Jφ(p)| > 0). In contrast, local regions with negative Jaco-

bian determinant indicate that the one-to-one mapping has

been lost. In our experiments, we compute the Jacobian

determinant of the deformation fields and count the num-

ber of voxels with non-positive Jacobian determinant (i.e.,

|Jφ(p)| ≤ 0).

5.3. Baseline Methods

We compare our proposed method to the classic sym-

metric image normalization method (SyN) [3] and two un-

supervised learning-based deformable registration methods

[5, 9], denoted as VM and DIF-VM. SyN is one of the

top-performing registration algorithms among 14 typical

nonlinear deformation algorithms [18]. VM and DIF-VM

are the cutting edge unsupervised deformable registration

methods proposed recently. VM utilizes a CNN and a

diffusion regularizer to estimate displacement vector fields

while DIF-VM presents a probabilistic diffeomorphic reg-

istration method with CNN. For SyN, we use the SyN im-

plementation in the ANTs package [4] with careful pa-

rameter tuning. Since SyN is an iterative-based approach,

we set the maximum iteration to (200, 100, 50) for each

level to balance the tradeoff between registration accuracy

and running time. For the learning-based methods (VM

and DIF-VM), we used their official implementation online

(https://github.com/voxelmorph/voxelmorph), which is de-

veloped and maintained by the authors. We train VM and

DIF-VM from scratch and followed the optimal parameters

setting in [5, 9] to obtain the best performance. Different

from the experiment settings in [5, 9], we train learning-

based methods by pairwise registration with image volume

pairs in training set only, and hence, the atlases are not in-

cluded in the training phase. Also, to study the effect of

the regularizer, we train VM with different weights for the

regularizer.

5.4. Implementation

Our proposed method (denoted as SYMNet) is imple-

mented based on Pytorch [22]. We adopt the stochastic gra-

dient descent (SGD) [6] optimizer with the learning rate and

momentum set to 1e−4 and 0.9 respectively. We obtain the

best result with λ1 = 1000, λ2 = 3 and λ3 = 0.1. All the

parameters were tuned by grid search. We train our network

on a GTX 1080Ti GPU and select the model that obtaining

the highest Dice score on the validation set. To evaluate

the effectiveness of the proposed local orientation consis-

tency loss, we compare SYMNet to its variant (denotes as

SYMNet-1), in which the proposed local orientation consis-

tency loss is removed during the training phase.

5.5. Results

5.5.1 Registration Performance

Table 2 shows average DSC and number of voxels with non-

positive Jacobian determinant over all subjects and struc-

tures for a baseline of affine normalization, SyN, DIF-VM,

VM (and its variants), and our proposed method SYMNet.

All the learning-based methods (DIF-VM, VM and SYM-

Net) outperform SyN in terms of average DSC. However,

VM does not yield diffeomorphic results since the num-

ber voxels with non-positive Jacobian determinant is sig-

nificantly large. Fig. 3 shows an example axial MR slices

from resulting warped image for DIF-VM, VM and our

method. Although DIF-VM reports comparable registration

accuracy with VM in [9], we found that resulting warped
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Method Avg. DSC |Jφ| ≤ 0

Affine 0.567 (0.180) -

SyN 0.680 (0.132) 0.047 (0.612)

DIF-VM 0.693 (0.156) 346.712 (703.418)

VM (λ = 1) 0.727 (0.144) 116168 (88739)
VM (λ = 5) 0.712 (0.132) 266.594 (246.811)
VM (λ = 10) 0.707 (0.128) 0.588 (0.764)

SYMNet-1 0.743 (0.113) 1156 (2015)
SYMNet 0.738 (0.108) 0.471 (0.921)

Table 1. Average Dice scores (higher is better) and average number

of voxels with non-positive Jacobian Determinant (lower is better).

Standard deviations are shown in parentheses. Affine: Affine spa-

tial normalization.

λ1 Avg. DSC |Jφ| ≤ 0

λ1 = 0 0.7434 (0.113) 1156 (2015)
λ1 = 1 0.7431 (0.110) 860 (1562)
λ1 = 10 0.7423 (0.111) 460 (845)
λ1 = 100 0.7408 (0.104) 133 (260)
λ1 = 1000 0.7381 (0.108) 0.471 (0.921)

Table 2. Influence of the proposed local orientation consistency

loss with varying weights. Average Dice scores (higher is better)

and average number of voxels with non-positive Jacobian Deter-

minant (lower is better). Standard deviations are shown in paren-

theses.

image from DIF-VM is often sub-optimal, especially in left

and right Putamen. Also, we observe that the resulting de-

formation fields from VM are discontinuous. We visual-

ize the regions with non-positive Jacobian determinant with

red color in the resulting deformation fields. Our proposed

method achieves the overall best performance in terms of

average DSC, while maintaining the number voxels with

non-positive Jacobian determinant close to zero, which im-

plies that our resulting deformation fields guarantee the de-

sirable diffeomorphic properties. The boxplots in Fig. 4

illustrate the distribution of DSC for each anatomical struc-

ture. Compare to methods with diffeomorphic properties,

our proposed method achieves the best performance in all

anatomical structures over all the methods.

5.5.2 Effect of the Local Orientation-consistent Loss

Table 2 presents the effect of the proposed local orientation-

consistent loss on DSC and the number of voxels with

|Jφ| <= 0 with varying weights λ1. Although both our

method (SYMNet-1) and DIF-VM optimize the problem in

diffeomorphic space, the experiments in Table 1 show that

the resulting solutions are not necessary diffeomorphic. The

underlying reasons are that the deformations can only be

represented discretely with a finite number of parameters

Time (s) SyN VM DIF-VM SYMNet

Avg. 1039 0.695 0.517 0.414
Std. 59 0.381 0.121 0.012

Table 3. Average and standard deviation of the running time in

second for each deformable registration to register a pair of image

volumes (lower is better).

and the interpolations used during the integration of veloc-

ity fields could cause violations. The results in Table 2 show

that our proposed local orientation consistency loss force

the model to aware and able to guide the model to correct

these violations in resulting solution. Compare to the global

regularization loss in VM in Table 1, the proposed local ori-

entation consistency maintains the resulting solutions to be

diffeomorphic without exceedingly sacrificing the registra-

tion accuracy.

5.5.3 Runtime Analysis

We report the average running time for non-linear de-

formable registration of each subject to an atlas using an In-

tel i7-7700 CPU and an NVIDIA GTX1080Ti GPU, where

the running time for affine normalization is not included.

Table 3 shows the average running time of the proposed

methods and those baseline methods. It is worth not-

ing that the implementation of SyN in ANTs utilizes CPU

only, while the learning-based methods (i.e., DIF-VM, VM,

SYMNet) utilize both CPU and GPU during deformable

registration. We observe that learning-based methods are

significantly faster than the traditional method SyN, which

able to register a subject MR volume to an atlas with less

than a second. The result shows that our method inherits

the fast registration property form CNN-based registration

methods. This implies that our method has a potential in

real-time deformable registration in clinical applications.

6. Conclusion
In this paper, we have presented a fast symmetric diffeo-

morphic approach to deformable image registration using

CNN, which learns the symmetric deformation fields that

align the pair of images to their mean shape within the space

of diffeomorphic maps. We have then proposed a novel lo-

cal orientation-consistency loss that leverages the Jacobian

determinant to further guarantee the desirable diffeomor-

phic properties of the resulting solutions. We have evalu-

ated our model by using a large-scale brain MR dataset and

compared our method to the classic registration approach

and state-of-the-art unsupervised learning-based methods.

The results obtained from the comprehensive experiments

demonstrate that our method can outperform both the tradi-

tional method and learning-based methods in terms of reg-

istration accuracy and the quality of the deformation fields.
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